Metamath Proof Explorer


Theorem en2

Description: A set equinumerous to ordinal 2 is a pair. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion en2 A 2 𝑜 x y A = x y

Proof

Step Hyp Ref Expression
1 1onn 1 𝑜 ω
2 df-2o 2 𝑜 = suc 1 𝑜
3 en1 A x 1 𝑜 y A x = y
4 3 biimpi A x 1 𝑜 y A x = y
5 df-pr x y = x y
6 5 enp1ilem x A A x = y A = x y
7 6 eximdv x A y A x = y y A = x y
8 1 2 4 7 enp1i A 2 𝑜 x y A = x y