Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite sets (cont.)
en2
Next ⟩
en3
Metamath Proof Explorer
Ascii
Unicode
Theorem
en2
Description:
A set equinumerous to ordinal 2 is a pair.
(Contributed by
Mario Carneiro
, 5-Jan-2016)
Ref
Expression
Assertion
en2
⊢
A
≈
2
𝑜
→
∃
x
∃
y
A
=
x
y
Proof
Step
Hyp
Ref
Expression
1
1on
⊢
1
𝑜
∈
On
2
1
onordi
⊢
Ord
⁡
1
𝑜
3
df-2o
⊢
2
𝑜
=
suc
⁡
1
𝑜
4
en1
⊢
A
∖
x
≈
1
𝑜
↔
∃
y
A
∖
x
=
y
5
4
biimpi
⊢
A
∖
x
≈
1
𝑜
→
∃
y
A
∖
x
=
y
6
df-pr
⊢
x
y
=
x
∪
y
7
6
enp1ilem
⊢
x
∈
A
→
A
∖
x
=
y
→
A
=
x
y
8
7
eximdv
⊢
x
∈
A
→
∃
y
A
∖
x
=
y
→
∃
y
A
=
x
y
9
2
3
5
8
enp1i
⊢
A
≈
2
𝑜
→
∃
x
∃
y
A
=
x
y