Metamath Proof Explorer


Theorem en2eqpr

Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion en2eqpr C 2 𝑜 A C B C A B C = A B

Proof

Step Hyp Ref Expression
1 2onn 2 𝑜 ω
2 nnfi 2 𝑜 ω 2 𝑜 Fin
3 1 2 ax-mp 2 𝑜 Fin
4 simpl1 C 2 𝑜 A C B C A B C 2 𝑜
5 enfii 2 𝑜 Fin C 2 𝑜 C Fin
6 3 4 5 sylancr C 2 𝑜 A C B C A B C Fin
7 simpl2 C 2 𝑜 A C B C A B A C
8 simpl3 C 2 𝑜 A C B C A B B C
9 7 8 prssd C 2 𝑜 A C B C A B A B C
10 pr2nelem A C B C A B A B 2 𝑜
11 10 3expa A C B C A B A B 2 𝑜
12 11 3adantl1 C 2 𝑜 A C B C A B A B 2 𝑜
13 4 ensymd C 2 𝑜 A C B C A B 2 𝑜 C
14 entr A B 2 𝑜 2 𝑜 C A B C
15 12 13 14 syl2anc C 2 𝑜 A C B C A B A B C
16 fisseneq C Fin A B C A B C A B = C
17 6 9 15 16 syl3anc C 2 𝑜 A C B C A B A B = C
18 17 eqcomd C 2 𝑜 A C B C A B C = A B
19 18 ex C 2 𝑜 A C B C A B C = A B