Metamath Proof Explorer


Theorem en2i

Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004)

Ref Expression
Hypotheses en2i.1 A V
en2i.2 B V
en2i.3 x A C V
en2i.4 y B D V
en2i.5 x A y = C y B x = D
Assertion en2i A B

Proof

Step Hyp Ref Expression
1 en2i.1 A V
2 en2i.2 B V
3 en2i.3 x A C V
4 en2i.4 y B D V
5 en2i.5 x A y = C y B x = D
6 1 a1i A V
7 2 a1i B V
8 3 a1i x A C V
9 4 a1i y B D V
10 5 a1i x A y = C y B x = D
11 6 7 8 9 10 en2d A B
12 11 mptru A B