Metamath Proof Explorer


Theorem en2other2

Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Assertion en2other2 X P P 2 𝑜 P P X = X

Proof

Step Hyp Ref Expression
1 en2eleq X P P 2 𝑜 P = X P X
2 prcom X P X = P X X
3 1 2 eqtrdi X P P 2 𝑜 P = P X X
4 3 difeq1d X P P 2 𝑜 P P X = P X X P X
5 difprsnss P X X P X X
6 4 5 eqsstrdi X P P 2 𝑜 P P X X
7 simpl X P P 2 𝑜 X P
8 1onn 1 𝑜 ω
9 simpr X P P 2 𝑜 P 2 𝑜
10 df-2o 2 𝑜 = suc 1 𝑜
11 9 10 breqtrdi X P P 2 𝑜 P suc 1 𝑜
12 dif1en 1 𝑜 ω P suc 1 𝑜 X P P X 1 𝑜
13 8 11 7 12 mp3an2i X P P 2 𝑜 P X 1 𝑜
14 en1uniel P X 1 𝑜 P X P X
15 eldifsni P X P X P X X
16 13 14 15 3syl X P P 2 𝑜 P X X
17 16 necomd X P P 2 𝑜 X P X
18 eldifsn X P P X X P X P X
19 7 17 18 sylanbrc X P P 2 𝑜 X P P X
20 19 snssd X P P 2 𝑜 X P P X
21 6 20 eqssd X P P 2 𝑜 P P X = X
22 21 unieqd X P P 2 𝑜 P P X = X
23 unisng X P X = X
24 23 adantr X P P 2 𝑜 X = X
25 22 24 eqtrd X P P 2 𝑜 P P X = X