| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  | 
						
							| 2 |  | toponss |  | 
						
							| 3 | 2 | ad2ant2rl |  | 
						
							| 4 |  | simprl |  | 
						
							| 5 |  | sseq0 |  | 
						
							| 6 | 3 4 5 | syl2anc |  | 
						
							| 7 |  | velsn |  | 
						
							| 8 | 6 7 | sylibr |  | 
						
							| 9 | 8 | expr |  | 
						
							| 10 | 9 | ssrdv |  | 
						
							| 11 |  | topontop |  | 
						
							| 12 |  | 0opn |  | 
						
							| 13 | 11 12 | syl |  | 
						
							| 14 | 13 | ad2antrr |  | 
						
							| 15 | 14 | snssd |  | 
						
							| 16 | 10 15 | eqssd |  | 
						
							| 17 |  | 0ex |  | 
						
							| 18 | 17 | ensn1 |  | 
						
							| 19 | 16 18 | eqbrtrdi |  | 
						
							| 20 | 19 | olcd |  | 
						
							| 21 |  | sdom2en01 |  | 
						
							| 22 | 20 21 | sylibr |  | 
						
							| 23 |  | sdomnen |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 | 24 | ex |  | 
						
							| 26 | 25 | necon2ad |  | 
						
							| 27 | 1 26 | mpd |  | 
						
							| 28 | 27 | necomd |  | 
						
							| 29 | 13 | adantr |  | 
						
							| 30 |  | toponmax |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 |  | en2eqpr |  | 
						
							| 33 | 1 29 31 32 | syl3anc |  | 
						
							| 34 | 28 33 | mpd |  | 
						
							| 35 | 34 27 | jca |  | 
						
							| 36 |  | simprl |  | 
						
							| 37 |  | simprr |  | 
						
							| 38 | 37 | necomd |  | 
						
							| 39 |  | enpr2 |  | 
						
							| 40 | 17 30 38 39 | mp3an2ani |  | 
						
							| 41 | 36 40 | eqbrtrd |  | 
						
							| 42 | 35 41 | impbida |  |