Metamath Proof Explorer


Theorem en3i

Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004)

Ref Expression
Hypotheses en3i.1 A V
en3i.2 B V
en3i.3 x A C B
en3i.4 y B D A
en3i.5 x A y B x = D y = C
Assertion en3i A B

Proof

Step Hyp Ref Expression
1 en3i.1 A V
2 en3i.2 B V
3 en3i.3 x A C B
4 en3i.4 y B D A
5 en3i.5 x A y B x = D y = C
6 1 a1i A V
7 2 a1i B V
8 3 a1i x A C B
9 4 a1i y B D A
10 5 a1i x A y B x = D y = C
11 6 7 8 9 10 en3d A B
12 11 mptru A B