Metamath Proof Explorer


Theorem en3lpVD

Description: Virtual deduction proof of en3lp . (Contributed by Alan Sare, 24-Oct-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion en3lpVD ¬ A B B C C A

Proof

Step Hyp Ref Expression
1 pm2.1 ¬ A B C = A B C =
2 df-ne A B C ¬ A B C =
3 2 bicomi ¬ A B C = A B C
4 3 orbi1i ¬ A B C = A B C = A B C A B C =
5 1 4 mpbi A B C A B C =
6 zfregs2 A B C ¬ x A B C y y A B C y x
7 en3lplem2VD A B B C C A x A B C y y A B C y x
8 7 alrimiv A B B C C A x x A B C y y A B C y x
9 df-ral x A B C y y A B C y x x x A B C y y A B C y x
10 8 9 sylibr A B B C C A x A B C y y A B C y x
11 10 con3i ¬ x A B C y y A B C y x ¬ A B B C C A
12 6 11 syl A B C ¬ A B B C C A
13 idn1 A B C = A B C =
14 noel ¬ C
15 eleq2 A B C = C A B C C
16 15 notbid A B C = ¬ C A B C ¬ C
17 16 biimprd A B C = ¬ C ¬ C A B C
18 13 14 17 e10 A B C = ¬ C A B C
19 tpid3g C A C A B C
20 19 con3i ¬ C A B C ¬ C A
21 18 20 e1a A B C = ¬ C A
22 simp3 A B B C C A C A
23 22 con3i ¬ C A ¬ A B B C C A
24 21 23 e1a A B C = ¬ A B B C C A
25 24 in1 A B C = ¬ A B B C C A
26 12 25 jaoi A B C A B C = ¬ A B B C C A
27 5 26 ax-mp ¬ A B B C C A