Metamath Proof Explorer


Theorem en3lplem1

Description: Lemma for en3lp . (Contributed by Alan Sare, 28-Oct-2011)

Ref Expression
Assertion en3lplem1 A B B C C A x = A x A B C

Proof

Step Hyp Ref Expression
1 simp3 A B B C C A C A
2 eleq2 x = A C x C A
3 1 2 syl5ibrcom A B B C C A x = A C x
4 tpid3g C A C A B C
5 4 3ad2ant3 A B B C C A C A B C
6 inelcm C x C A B C x A B C
7 5 6 sylan2 C x A B B C C A x A B C
8 7 expcom A B B C C A C x x A B C
9 3 8 syld A B B C C A x = A x A B C