Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Regularity
Introduce the Axiom of Regularity
en3lplem1
Next ⟩
en3lplem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
en3lplem1
Description:
Lemma for
en3lp
.
(Contributed by
Alan Sare
, 28-Oct-2011)
Ref
Expression
Assertion
en3lplem1
⊢
A
∈
B
∧
B
∈
C
∧
C
∈
A
→
x
=
A
→
x
∩
A
B
C
≠
∅
Proof
Step
Hyp
Ref
Expression
1
simp3
⊢
A
∈
B
∧
B
∈
C
∧
C
∈
A
→
C
∈
A
2
eleq2
⊢
x
=
A
→
C
∈
x
↔
C
∈
A
3
1
2
syl5ibrcom
⊢
A
∈
B
∧
B
∈
C
∧
C
∈
A
→
x
=
A
→
C
∈
x
4
tpid3g
⊢
C
∈
A
→
C
∈
A
B
C
5
4
3ad2ant3
⊢
A
∈
B
∧
B
∈
C
∧
C
∈
A
→
C
∈
A
B
C
6
inelcm
⊢
C
∈
x
∧
C
∈
A
B
C
→
x
∩
A
B
C
≠
∅
7
5
6
sylan2
⊢
C
∈
x
∧
A
∈
B
∧
B
∈
C
∧
C
∈
A
→
x
∩
A
B
C
≠
∅
8
7
expcom
⊢
A
∈
B
∧
B
∈
C
∧
C
∈
A
→
C
∈
x
→
x
∩
A
B
C
≠
∅
9
3
8
syld
⊢
A
∈
B
∧
B
∈
C
∧
C
∈
A
→
x
=
A
→
x
∩
A
B
C
≠
∅