Metamath Proof Explorer


Theorem en3lplem1VD

Description: Virtual deduction proof of en3lplem1 . (Contributed by Alan Sare, 24-Oct-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion en3lplem1VD A B B C C A x = A y y A B C y x

Proof

Step Hyp Ref Expression
1 idn1 A B B C C A A B B C C A
2 simp3 A B B C C A C A
3 1 2 e1a A B B C C A C A
4 tpid3g C A C A B C
5 3 4 e1a A B B C C A C A B C
6 idn2 A B B C C A , x = A x = A
7 eleq2 x = A C x C A
8 7 biimprd x = A C A C x
9 6 3 8 e21 A B B C C A , x = A C x
10 pm3.2 C A B C C x C A B C C x
11 5 9 10 e12 A B B C C A , x = A C A B C C x
12 elex22 C A B C C x y y A B C y x
13 11 12 e2 A B B C C A , x = A y y A B C y x
14 13 in2 A B B C C A x = A y y A B C y x
15 14 in1 A B B C C A x = A y y A B C y x