Metamath Proof Explorer


Theorem en3lplem2

Description: Lemma for en3lp . (Contributed by Alan Sare, 28-Oct-2011)

Ref Expression
Assertion en3lplem2 A B B C C A x A B C x A B C

Proof

Step Hyp Ref Expression
1 en3lplem1 A B B C C A x = A x A B C
2 en3lplem1 B C C A A B x = B x B C A
3 2 3comr A B B C C A x = B x B C A
4 3 a1d A B B C C A x A B C x = B x B C A
5 tprot A B C = B C A
6 5 ineq2i x A B C = x B C A
7 6 neeq1i x A B C x B C A
8 7 bicomi x B C A x A B C
9 4 8 syl8ib A B B C C A x A B C x = B x A B C
10 jao x = A x A B C x = B x A B C x = A x = B x A B C
11 1 9 10 sylsyld A B B C C A x A B C x = A x = B x A B C
12 11 imp A B B C C A x A B C x = A x = B x A B C
13 en3lplem1 C A A B B C x = C x C A B
14 13 3coml A B B C C A x = C x C A B
15 14 a1d A B B C C A x A B C x = C x C A B
16 tprot C A B = A B C
17 16 ineq2i x C A B = x A B C
18 17 neeq1i x C A B x A B C
19 15 18 syl8ib A B B C C A x A B C x = C x A B C
20 19 imp A B B C C A x A B C x = C x A B C
21 idd A B B C C A x A B C x A B C
22 dftp2 A B C = x | x = A x = B x = C
23 22 eleq2i x A B C x x | x = A x = B x = C
24 21 23 syl6ib A B B C C A x A B C x x | x = A x = B x = C
25 abid x x | x = A x = B x = C x = A x = B x = C
26 24 25 syl6ib A B B C C A x A B C x = A x = B x = C
27 df-3or x = A x = B x = C x = A x = B x = C
28 26 27 syl6ib A B B C C A x A B C x = A x = B x = C
29 28 imp A B B C C A x A B C x = A x = B x = C
30 12 20 29 mpjaod A B B C C A x A B C x A B C
31 30 ex A B B C C A x A B C x A B C