Metamath Proof Explorer


Theorem en4

Description: A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion en4 A 4 𝑜 x y z w A = x y z w

Proof

Step Hyp Ref Expression
1 3onn 3 𝑜 ω
2 df-4o 4 𝑜 = suc 3 𝑜
3 en3 A x 3 𝑜 y z w A x = y z w
4 qdassr x y z w = x y z w
5 4 enp1ilem x A A x = y z w A = x y z w
6 5 eximdv x A w A x = y z w w A = x y z w
7 6 2eximdv x A y z w A x = y z w y z w A = x y z w
8 1 2 3 7 enp1i A 4 𝑜 x y z w A = x y z w