Metamath Proof Explorer


Theorem endisj

Description: Any two sets are equinumerous to two disjoint sets. Exercise 4.39 of Mendelson p. 255. (Contributed by NM, 16-Apr-2004)

Ref Expression
Hypotheses endisj.1 A V
endisj.2 B V
Assertion endisj x y x A y B x y =

Proof

Step Hyp Ref Expression
1 endisj.1 A V
2 endisj.2 B V
3 0ex V
4 1 3 xpsnen A × A
5 1oex 1 𝑜 V
6 2 5 xpsnen B × 1 𝑜 B
7 4 6 pm3.2i A × A B × 1 𝑜 B
8 xp01disj A × B × 1 𝑜 =
9 p0ex V
10 1 9 xpex A × V
11 snex 1 𝑜 V
12 2 11 xpex B × 1 𝑜 V
13 breq1 x = A × x A A × A
14 breq1 y = B × 1 𝑜 y B B × 1 𝑜 B
15 13 14 bi2anan9 x = A × y = B × 1 𝑜 x A y B A × A B × 1 𝑜 B
16 ineq12 x = A × y = B × 1 𝑜 x y = A × B × 1 𝑜
17 16 eqeq1d x = A × y = B × 1 𝑜 x y = A × B × 1 𝑜 =
18 15 17 anbi12d x = A × y = B × 1 𝑜 x A y B x y = A × A B × 1 𝑜 B A × B × 1 𝑜 =
19 10 12 18 spc2ev A × A B × 1 𝑜 B A × B × 1 𝑜 = x y x A y B x y =
20 7 8 19 mp2an x y x A y B x y =