Metamath Proof Explorer


Theorem endjudisj

Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by NM, 5-Apr-2007)

Ref Expression
Assertion endjudisj A V B W A B = A ⊔︀ B A B

Proof

Step Hyp Ref Expression
1 df-dju A ⊔︀ B = × A 1 𝑜 × B
2 0ex V
3 xpsnen2g V A V × A A
4 2 3 mpan A V × A A
5 1on 1 𝑜 On
6 xpsnen2g 1 𝑜 On B W 1 𝑜 × B B
7 5 6 mpan B W 1 𝑜 × B B
8 4 7 anim12i A V B W × A A 1 𝑜 × B B
9 xp01disjl × A 1 𝑜 × B =
10 9 jctl A B = × A 1 𝑜 × B = A B =
11 unen × A A 1 𝑜 × B B × A 1 𝑜 × B = A B = × A 1 𝑜 × B A B
12 8 10 11 syl2an A V B W A B = × A 1 𝑜 × B A B
13 12 3impa A V B W A B = × A 1 𝑜 × B A B
14 1 13 eqbrtrid A V B W A B = A ⊔︀ B A B