Metamath Proof Explorer


Theorem ene1

Description: _e is not 1. (Contributed by David A. Wheeler, 17-Oct-2017)

Ref Expression
Assertion ene1 e 1

Proof

Step Hyp Ref Expression
1 1re 1
2 1lt2 1 < 2
3 egt2lt3 2 < e e < 3
4 3 simpli 2 < e
5 2re 2
6 ere e
7 1 5 6 lttri 1 < 2 2 < e 1 < e
8 2 4 7 mp2an 1 < e
9 1 8 gtneii e 1