Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Schroeder-Bernstein Theorem
enen1
Next ⟩
enen2
Metamath Proof Explorer
Ascii
Unicode
Theorem
enen1
Description:
Equality-like theorem for equinumerosity.
(Contributed by
NM
, 18-Dec-2003)
Ref
Expression
Assertion
enen1
⊢
A
≈
B
→
A
≈
C
↔
B
≈
C
Proof
Step
Hyp
Ref
Expression
1
ensym
⊢
A
≈
B
→
B
≈
A
2
entr
⊢
B
≈
A
∧
A
≈
C
→
B
≈
C
3
1
2
sylan
⊢
A
≈
B
∧
A
≈
C
→
B
≈
C
4
entr
⊢
A
≈
B
∧
B
≈
C
→
A
≈
C
5
3
4
impbida
⊢
A
≈
B
→
A
≈
C
↔
B
≈
C