Metamath Proof Explorer


Theorem enfiALT

Description: Shorter proof of enfi using ax-pow . (Contributed by NM, 22-Aug-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion enfiALT A B A Fin B Fin

Proof

Step Hyp Ref Expression
1 enen1 A B A x B x
2 1 rexbidv A B x ω A x x ω B x
3 isfi A Fin x ω A x
4 isfi B Fin x ω B x
5 2 3 4 3bitr4g A B A Fin B Fin