| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ensym |
|
| 2 |
|
bren |
|
| 3 |
1 2
|
sylib |
|
| 4 |
|
elpwi |
|
| 5 |
|
simplr |
|
| 6 |
|
imassrn |
|
| 7 |
|
f1of |
|
| 8 |
7
|
ad2antrr |
|
| 9 |
8
|
frnd |
|
| 10 |
6 9
|
sstrid |
|
| 11 |
|
fin1ai |
|
| 12 |
5 10 11
|
syl2anc |
|
| 13 |
|
f1of1 |
|
| 14 |
13
|
ad2antrr |
|
| 15 |
|
simpr |
|
| 16 |
|
vex |
|
| 17 |
16
|
a1i |
|
| 18 |
|
f1imaeng |
|
| 19 |
14 15 17 18
|
syl3anc |
|
| 20 |
|
enfi |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
df-f1 |
|
| 23 |
22
|
simprbi |
|
| 24 |
|
imadif |
|
| 25 |
14 23 24
|
3syl |
|
| 26 |
|
f1ofo |
|
| 27 |
|
foima |
|
| 28 |
26 27
|
syl |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
29
|
difeq1d |
|
| 31 |
25 30
|
eqtrd |
|
| 32 |
|
difssd |
|
| 33 |
|
vex |
|
| 34 |
7
|
adantr |
|
| 35 |
|
dmfex |
|
| 36 |
33 34 35
|
sylancr |
|
| 37 |
36
|
adantr |
|
| 38 |
37
|
difexd |
|
| 39 |
|
f1imaeng |
|
| 40 |
14 32 38 39
|
syl3anc |
|
| 41 |
31 40
|
eqbrtrrd |
|
| 42 |
|
enfi |
|
| 43 |
41 42
|
syl |
|
| 44 |
21 43
|
orbi12d |
|
| 45 |
12 44
|
mpbid |
|
| 46 |
4 45
|
sylan2 |
|
| 47 |
46
|
ralrimiva |
|
| 48 |
|
isfin1a |
|
| 49 |
36 48
|
syl |
|
| 50 |
47 49
|
mpbird |
|
| 51 |
50
|
ex |
|
| 52 |
51
|
exlimiv |
|
| 53 |
3 52
|
syl |
|