Step |
Hyp |
Ref |
Expression |
1 |
|
ensym |
|
2 |
|
bren |
|
3 |
1 2
|
sylib |
|
4 |
|
elpwi |
|
5 |
|
simplr |
|
6 |
|
imassrn |
|
7 |
|
f1of |
|
8 |
7
|
ad2antrr |
|
9 |
8
|
frnd |
|
10 |
6 9
|
sstrid |
|
11 |
|
fin1ai |
|
12 |
5 10 11
|
syl2anc |
|
13 |
|
f1of1 |
|
14 |
13
|
ad2antrr |
|
15 |
|
simpr |
|
16 |
|
vex |
|
17 |
16
|
a1i |
|
18 |
|
f1imaeng |
|
19 |
14 15 17 18
|
syl3anc |
|
20 |
|
enfi |
|
21 |
19 20
|
syl |
|
22 |
|
df-f1 |
|
23 |
22
|
simprbi |
|
24 |
|
imadif |
|
25 |
14 23 24
|
3syl |
|
26 |
|
f1ofo |
|
27 |
|
foima |
|
28 |
26 27
|
syl |
|
29 |
28
|
ad2antrr |
|
30 |
29
|
difeq1d |
|
31 |
25 30
|
eqtrd |
|
32 |
|
difssd |
|
33 |
|
vex |
|
34 |
7
|
adantr |
|
35 |
|
dmfex |
|
36 |
33 34 35
|
sylancr |
|
37 |
36
|
adantr |
|
38 |
37
|
difexd |
|
39 |
|
f1imaeng |
|
40 |
14 32 38 39
|
syl3anc |
|
41 |
31 40
|
eqbrtrrd |
|
42 |
|
enfi |
|
43 |
41 42
|
syl |
|
44 |
21 43
|
orbi12d |
|
45 |
12 44
|
mpbid |
|
46 |
4 45
|
sylan2 |
|
47 |
46
|
ralrimiva |
|
48 |
|
isfin1a |
|
49 |
36 48
|
syl |
|
50 |
47 49
|
mpbird |
|
51 |
50
|
ex |
|
52 |
51
|
exlimiv |
|
53 |
3 52
|
syl |
|