Metamath Proof Explorer


Theorem enfin2i

Description: II-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion enfin2i A B A FinII B FinII

Proof

Step Hyp Ref Expression
1 bren A B f f : A 1-1 onto B
2 elpwi x 𝒫 𝒫 B x 𝒫 B
3 imauni f y 𝒫 A | f y x = z y 𝒫 A | f y x f z
4 vex f V
5 4 imaex f z V
6 5 dfiun2 z y 𝒫 A | f y x f z = w | z y 𝒫 A | f y x w = f z
7 3 6 eqtri f y 𝒫 A | f y x = w | z y 𝒫 A | f y x w = f z
8 imaeq2 y = z f y = f z
9 8 eleq1d y = z f y x f z x
10 9 rexrab z y 𝒫 A | f y x w = f z z 𝒫 A f z x w = f z
11 eleq1 w = f z w x f z x
12 11 biimparc f z x w = f z w x
13 12 rexlimivw z 𝒫 A f z x w = f z w x
14 cnvimass f -1 w dom f
15 f1odm f : A 1-1 onto B dom f = A
16 15 ad3antrrr f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w x dom f = A
17 14 16 sseqtrid f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w x f -1 w A
18 4 cnvex f -1 V
19 18 imaex f -1 w V
20 19 elpw f -1 w 𝒫 A f -1 w A
21 17 20 sylibr f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w x f -1 w 𝒫 A
22 f1ofo f : A 1-1 onto B f : A onto B
23 22 ad3antrrr f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w x f : A onto B
24 simprl f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x x 𝒫 B
25 24 sselda f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w x w 𝒫 B
26 25 elpwid f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w x w B
27 foimacnv f : A onto B w B f f -1 w = w
28 23 26 27 syl2anc f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w x f f -1 w = w
29 28 eqcomd f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w x w = f f -1 w
30 simpr f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w x w x
31 29 30 eqeltrrd f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w x f f -1 w x
32 imaeq2 z = f -1 w f z = f f -1 w
33 32 eleq1d z = f -1 w f z x f f -1 w x
34 32 eqeq2d z = f -1 w w = f z w = f f -1 w
35 33 34 anbi12d z = f -1 w f z x w = f z f f -1 w x w = f f -1 w
36 35 rspcev f -1 w 𝒫 A f f -1 w x w = f f -1 w z 𝒫 A f z x w = f z
37 21 31 29 36 syl12anc f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w x z 𝒫 A f z x w = f z
38 37 ex f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w x z 𝒫 A f z x w = f z
39 13 38 impbid2 f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z 𝒫 A f z x w = f z w x
40 10 39 syl5bb f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z y 𝒫 A | f y x w = f z w x
41 40 abbi1dv f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w | z y 𝒫 A | f y x w = f z = x
42 41 unieqd f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w | z y 𝒫 A | f y x w = f z = x
43 7 42 eqtrid f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x f y 𝒫 A | f y x = x
44 simplr f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x A FinII
45 ssrab2 y 𝒫 A | f y x 𝒫 A
46 45 a1i f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x y 𝒫 A | f y x 𝒫 A
47 simprrl f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x x
48 n0 x w w x
49 47 48 sylib f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w w x
50 imaeq2 y = f -1 w f y = f f -1 w
51 50 eleq1d y = f -1 w f y x f f -1 w x
52 51 rspcev f -1 w 𝒫 A f f -1 w x y 𝒫 A f y x
53 21 31 52 syl2anc f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x w x y 𝒫 A f y x
54 49 53 exlimddv f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x y 𝒫 A f y x
55 rabn0 y 𝒫 A | f y x y 𝒫 A f y x
56 54 55 sylibr f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x y 𝒫 A | f y x
57 9 elrab z y 𝒫 A | f y x z 𝒫 A f z x
58 imaeq2 y = w f y = f w
59 58 eleq1d y = w f y x f w x
60 59 elrab w y 𝒫 A | f y x w 𝒫 A f w x
61 57 60 anbi12i z y 𝒫 A | f y x w y 𝒫 A | f y x z 𝒫 A f z x w 𝒫 A f w x
62 simprrr f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x [⊂] Or x
63 62 adantr f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z 𝒫 A f z x w 𝒫 A f w x [⊂] Or x
64 simprlr f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z 𝒫 A f z x w 𝒫 A f w x f z x
65 simprrr f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z 𝒫 A f z x w 𝒫 A f w x f w x
66 sorpssi [⊂] Or x f z x f w x f z f w f w f z
67 63 64 65 66 syl12anc f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z 𝒫 A f z x w 𝒫 A f w x f z f w f w f z
68 f1of1 f : A 1-1 onto B f : A 1-1 B
69 68 ad3antrrr f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z 𝒫 A f z x w 𝒫 A f w x f : A 1-1 B
70 simprll f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z 𝒫 A f z x w 𝒫 A f w x z 𝒫 A
71 70 elpwid f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z 𝒫 A f z x w 𝒫 A f w x z A
72 simprrl f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z 𝒫 A f z x w 𝒫 A f w x w 𝒫 A
73 72 elpwid f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z 𝒫 A f z x w 𝒫 A f w x w A
74 f1imass f : A 1-1 B z A w A f z f w z w
75 69 71 73 74 syl12anc f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z 𝒫 A f z x w 𝒫 A f w x f z f w z w
76 f1imass f : A 1-1 B w A z A f w f z w z
77 69 73 71 76 syl12anc f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z 𝒫 A f z x w 𝒫 A f w x f w f z w z
78 75 77 orbi12d f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z 𝒫 A f z x w 𝒫 A f w x f z f w f w f z z w w z
79 67 78 mpbid f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z 𝒫 A f z x w 𝒫 A f w x z w w z
80 61 79 sylan2b f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z y 𝒫 A | f y x w y 𝒫 A | f y x z w w z
81 80 ralrimivva f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x z y 𝒫 A | f y x w y 𝒫 A | f y x z w w z
82 sorpss [⊂] Or y 𝒫 A | f y x z y 𝒫 A | f y x w y 𝒫 A | f y x z w w z
83 81 82 sylibr f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x [⊂] Or y 𝒫 A | f y x
84 fin2i A FinII y 𝒫 A | f y x 𝒫 A y 𝒫 A | f y x [⊂] Or y 𝒫 A | f y x y 𝒫 A | f y x y 𝒫 A | f y x
85 44 46 56 83 84 syl22anc f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x y 𝒫 A | f y x y 𝒫 A | f y x
86 imaeq2 z = y 𝒫 A | f y x f z = f y 𝒫 A | f y x
87 86 eleq1d z = y 𝒫 A | f y x f z x f y 𝒫 A | f y x x
88 9 cbvrabv y 𝒫 A | f y x = z 𝒫 A | f z x
89 87 88 elrab2 y 𝒫 A | f y x y 𝒫 A | f y x y 𝒫 A | f y x 𝒫 A f y 𝒫 A | f y x x
90 89 simprbi y 𝒫 A | f y x y 𝒫 A | f y x f y 𝒫 A | f y x x
91 85 90 syl f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x f y 𝒫 A | f y x x
92 43 91 eqeltrrd f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x x x
93 92 expr f : A 1-1 onto B A FinII x 𝒫 B x [⊂] Or x x x
94 2 93 sylan2 f : A 1-1 onto B A FinII x 𝒫 𝒫 B x [⊂] Or x x x
95 94 ralrimiva f : A 1-1 onto B A FinII x 𝒫 𝒫 B x [⊂] Or x x x
96 95 ex f : A 1-1 onto B A FinII x 𝒫 𝒫 B x [⊂] Or x x x
97 96 exlimiv f f : A 1-1 onto B A FinII x 𝒫 𝒫 B x [⊂] Or x x x
98 1 97 sylbi A B A FinII x 𝒫 𝒫 B x [⊂] Or x x x
99 relen Rel
100 99 brrelex2i A B B V
101 isfin2 B V B FinII x 𝒫 𝒫 B x [⊂] Or x x x
102 100 101 syl A B B FinII x 𝒫 𝒫 B x [⊂] Or x x x
103 98 102 sylibrd A B A FinII B FinII