Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|
2 |
|
bren |
|
3 |
1 2
|
sylib |
|
4 |
|
relen |
|
5 |
4
|
brrelex2i |
|
6 |
5
|
3ad2ant3 |
|
7 |
6
|
adantr |
|
8 |
|
f1of |
|
9 |
8
|
adantl |
|
10 |
|
simpl1 |
|
11 |
9 10
|
ffvelrnd |
|
12 |
|
simpl2 |
|
13 |
|
difsnen |
|
14 |
7 11 12 13
|
syl3anc |
|
15 |
|
bren |
|
16 |
14 15
|
sylib |
|
17 |
|
fvex |
|
18 |
17
|
a1i |
|
19 |
|
simpl2 |
|
20 |
|
f1osng |
|
21 |
18 19 20
|
syl2anc |
|
22 |
|
simprr |
|
23 |
|
disjdif |
|
24 |
23
|
a1i |
|
25 |
|
disjdif |
|
26 |
25
|
a1i |
|
27 |
|
f1oun |
|
28 |
21 22 24 26 27
|
syl22anc |
|
29 |
8
|
ad2antrl |
|
30 |
|
simpl1 |
|
31 |
29 30
|
ffvelrnd |
|
32 |
|
uncom |
|
33 |
|
difsnid |
|
34 |
32 33
|
eqtrid |
|
35 |
31 34
|
syl |
|
36 |
|
uncom |
|
37 |
|
difsnid |
|
38 |
36 37
|
eqtrid |
|
39 |
19 38
|
syl |
|
40 |
|
f1oeq23 |
|
41 |
35 39 40
|
syl2anc |
|
42 |
28 41
|
mpbid |
|
43 |
|
simprl |
|
44 |
|
f1oco |
|
45 |
42 43 44
|
syl2anc |
|
46 |
|
f1ofn |
|
47 |
46
|
ad2antrl |
|
48 |
|
fvco2 |
|
49 |
47 30 48
|
syl2anc |
|
50 |
|
f1ofn |
|
51 |
21 50
|
syl |
|
52 |
|
f1ofn |
|
53 |
52
|
ad2antll |
|
54 |
17
|
snid |
|
55 |
54
|
a1i |
|
56 |
|
fvun1 |
|
57 |
51 53 24 55 56
|
syl112anc |
|
58 |
|
fvsng |
|
59 |
18 19 58
|
syl2anc |
|
60 |
49 57 59
|
3eqtrd |
|
61 |
|
snex |
|
62 |
|
vex |
|
63 |
61 62
|
unex |
|
64 |
|
vex |
|
65 |
63 64
|
coex |
|
66 |
|
f1oeq1 |
|
67 |
|
fveq1 |
|
68 |
67
|
eqeq1d |
|
69 |
66 68
|
anbi12d |
|
70 |
65 69
|
spcev |
|
71 |
45 60 70
|
syl2anc |
|
72 |
71
|
expr |
|
73 |
72
|
exlimdv |
|
74 |
16 73
|
mpd |
|
75 |
3 74
|
exlimddv |
|