Metamath Proof Explorer


Theorem engch

Description: The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion engch A B A GCH B GCH

Proof

Step Hyp Ref Expression
1 enfi A B A Fin B Fin
2 sdomen1 A B A x B x
3 pwen A B 𝒫 A 𝒫 B
4 sdomen2 𝒫 A 𝒫 B x 𝒫 A x 𝒫 B
5 3 4 syl A B x 𝒫 A x 𝒫 B
6 2 5 anbi12d A B A x x 𝒫 A B x x 𝒫 B
7 6 notbid A B ¬ A x x 𝒫 A ¬ B x x 𝒫 B
8 7 albidv A B x ¬ A x x 𝒫 A x ¬ B x x 𝒫 B
9 1 8 orbi12d A B A Fin x ¬ A x x 𝒫 A B Fin x ¬ B x x 𝒫 B
10 relen Rel
11 10 brrelex1i A B A V
12 elgch A V A GCH A Fin x ¬ A x x 𝒫 A
13 11 12 syl A B A GCH A Fin x ¬ A x x 𝒫 A
14 10 brrelex2i A B B V
15 elgch B V B GCH B Fin x ¬ B x x 𝒫 B
16 14 15 syl A B B GCH B Fin x ¬ B x x 𝒫 B
17 9 13 16 3bitr4d A B A GCH B GCH