Description: Proof induction for en2 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016) Generalize to all ordinals and avoid ax-pow , ax-un . (Revised by BTernaryTau, 6-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | enp1i.1 | |
|
enp1i.2 | |
||
enp1i.3 | |
||
enp1i.4 | |
||
Assertion | enp1i | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enp1i.1 | |
|
2 | enp1i.2 | |
|
3 | enp1i.3 | |
|
4 | enp1i.4 | |
|
5 | 2 | breq2i | |
6 | encv | |
|
7 | 6 | simprd | |
8 | sssucid | |
|
9 | ssexg | |
|
10 | 8 9 | mpan | |
11 | elong | |
|
12 | 7 10 11 | 3syl | |
13 | 1 12 | mpbiri | |
14 | rexdif1en | |
|
15 | 13 14 | mpancom | |
16 | 3 | reximi | |
17 | df-rex | |
|
18 | 4 | imp | |
19 | 18 | eximi | |
20 | 17 19 | sylbi | |
21 | 15 16 20 | 3syl | |
22 | 5 21 | sylbi | |