Metamath Proof Explorer


Theorem enp1i

Description: Proof induction for en2 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016) Generalize to all ordinals and avoid ax-pow , ax-un . (Revised by BTernaryTau, 6-Jan-2025)

Ref Expression
Hypotheses enp1i.1 OrdM
enp1i.2 N=sucM
enp1i.3 AxMφ
enp1i.4 xAφψ
Assertion enp1i ANxψ

Proof

Step Hyp Ref Expression
1 enp1i.1 OrdM
2 enp1i.2 N=sucM
3 enp1i.3 AxMφ
4 enp1i.4 xAφψ
5 2 breq2i ANAsucM
6 encv AsucMAVsucMV
7 6 simprd AsucMsucMV
8 sssucid MsucM
9 ssexg MsucMsucMVMV
10 8 9 mpan sucMVMV
11 elong MVMOnOrdM
12 7 10 11 3syl AsucMMOnOrdM
13 1 12 mpbiri AsucMMOn
14 rexdif1en MOnAsucMxAAxM
15 13 14 mpancom AsucMxAAxM
16 3 reximi xAAxMxAφ
17 df-rex xAφxxAφ
18 4 imp xAφψ
19 18 eximi xxAφxψ
20 17 19 sylbi xAφxψ
21 15 16 20 3syl AsucMxψ
22 5 21 sylbi ANxψ