Metamath Proof Explorer


Theorem enp1i

Description: Proof induction for en2 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016) Generalize to all ordinals and avoid ax-pow , ax-un . (Revised by BTernaryTau, 6-Jan-2025)

Ref Expression
Hypotheses enp1i.1 Ord M
enp1i.2 N = suc M
enp1i.3 A x M φ
enp1i.4 x A φ ψ
Assertion enp1i A N x ψ

Proof

Step Hyp Ref Expression
1 enp1i.1 Ord M
2 enp1i.2 N = suc M
3 enp1i.3 A x M φ
4 enp1i.4 x A φ ψ
5 2 breq2i A N A suc M
6 encv A suc M A V suc M V
7 6 simprd A suc M suc M V
8 sssucid M suc M
9 ssexg M suc M suc M V M V
10 8 9 mpan suc M V M V
11 elong M V M On Ord M
12 7 10 11 3syl A suc M M On Ord M
13 1 12 mpbiri A suc M M On
14 rexdif1en M On A suc M x A A x M
15 13 14 mpancom A suc M x A A x M
16 3 reximi x A A x M x A φ
17 df-rex x A φ x x A φ
18 4 imp x A φ ψ
19 18 eximi x x A φ x ψ
20 17 19 sylbi x A φ x ψ
21 15 16 20 3syl A suc M x ψ
22 5 21 sylbi A N x ψ