Metamath Proof Explorer


Theorem enpr2

Description: An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d . (Contributed by FL, 17-Aug-2008) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 30-Dec-2024)

Ref Expression
Assertion enpr2 A C B D A B A B 2 𝑜

Proof

Step Hyp Ref Expression
1 df-ne A B ¬ A = B
2 simp1 A C B D ¬ A = B A C
3 simp2 A C B D ¬ A = B B D
4 simp3 A C B D ¬ A = B ¬ A = B
5 2 3 4 enpr2d A C B D ¬ A = B A B 2 𝑜
6 1 5 syl3an3b A C B D A B A B 2 𝑜