Metamath Proof Explorer


Theorem enqer

Description: The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of Gleason p. 117. (Contributed by NM, 27-Aug-1995) (Revised by Mario Carneiro, 6-Jul-2015) (New usage is discouraged.)

Ref Expression
Assertion enqer ~ 𝑸 Er 𝑵 × 𝑵

Proof

Step Hyp Ref Expression
1 df-enq ~ 𝑸 = x y | x 𝑵 × 𝑵 y 𝑵 × 𝑵 z w v u x = z w y = v u z 𝑵 u = w 𝑵 v
2 mulcompi x 𝑵 y = y 𝑵 x
3 mulclpi x 𝑵 y 𝑵 x 𝑵 y 𝑵
4 mulasspi x 𝑵 y 𝑵 z = x 𝑵 y 𝑵 z
5 mulcanpi x 𝑵 y 𝑵 x 𝑵 y = x 𝑵 z y = z
6 5 biimpd x 𝑵 y 𝑵 x 𝑵 y = x 𝑵 z y = z
7 1 2 3 4 6 ecopover ~ 𝑸 Er 𝑵 × 𝑵