Metamath Proof Explorer


Theorem enqex

Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995) (New usage is discouraged.)

Ref Expression
Assertion enqex ~ 𝑸 V

Proof

Step Hyp Ref Expression
1 niex 𝑵 V
2 1 1 xpex 𝑵 × 𝑵 V
3 2 2 xpex 𝑵 × 𝑵 × 𝑵 × 𝑵 V
4 df-enq ~ 𝑸 = x y | x 𝑵 × 𝑵 y 𝑵 × 𝑵 z w v u x = z w y = v u z 𝑵 u = w 𝑵 v
5 opabssxp x y | x 𝑵 × 𝑵 y 𝑵 × 𝑵 z w v u x = z w y = v u z 𝑵 u = w 𝑵 v 𝑵 × 𝑵 × 𝑵 × 𝑵
6 4 5 eqsstri ~ 𝑸 𝑵 × 𝑵 × 𝑵 × 𝑵
7 3 6 ssexi ~ 𝑸 V