Metamath Proof Explorer


Theorem enreceq

Description: Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995) (New usage is discouraged.)

Ref Expression
Assertion enreceq A 𝑷 B 𝑷 C 𝑷 D 𝑷 A B ~ 𝑹 = C D ~ 𝑹 A + 𝑷 D = B + 𝑷 C

Proof

Step Hyp Ref Expression
1 enrer ~ 𝑹 Er 𝑷 × 𝑷
2 1 a1i A 𝑷 B 𝑷 C 𝑷 D 𝑷 ~ 𝑹 Er 𝑷 × 𝑷
3 opelxpi A 𝑷 B 𝑷 A B 𝑷 × 𝑷
4 3 adantr A 𝑷 B 𝑷 C 𝑷 D 𝑷 A B 𝑷 × 𝑷
5 2 4 erth A 𝑷 B 𝑷 C 𝑷 D 𝑷 A B ~ 𝑹 C D A B ~ 𝑹 = C D ~ 𝑹
6 enrbreq A 𝑷 B 𝑷 C 𝑷 D 𝑷 A B ~ 𝑹 C D A + 𝑷 D = B + 𝑷 C
7 5 6 bitr3d A 𝑷 B 𝑷 C 𝑷 D 𝑷 A B ~ 𝑹 = C D ~ 𝑹 A + 𝑷 D = B + 𝑷 C