Metamath Proof Explorer
Description: Equinumerosity is reflexive. Theorem 1 of Suppes p. 92. (Contributed by NM, 18-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)
|
|
Ref |
Expression |
|
Assertion |
enrefg |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
f1oi |
|
2 |
|
f1oen2g |
|
3 |
1 2
|
mp3an3 |
|
4 |
3
|
anidms |
|