Metamath Proof Explorer


Theorem enrefg

Description: Equinumerosity is reflexive. Theorem 1 of Suppes p. 92. (Contributed by NM, 18-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion enrefg A V A A

Proof

Step Hyp Ref Expression
1 f1oi I A : A 1-1 onto A
2 f1oen2g A V A V I A : A 1-1 onto A A A
3 1 2 mp3an3 A V A V A A
4 3 anidms A V A A