Metamath Proof Explorer


Theorem enrer

Description: The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of Gleason p. 126. (Contributed by NM, 3-Sep-1995) (Revised by Mario Carneiro, 6-Jul-2015) (New usage is discouraged.)

Ref Expression
Assertion enrer ~ 𝑹 Er 𝑷 × 𝑷

Proof

Step Hyp Ref Expression
1 df-enr ~ 𝑹 = x y | x 𝑷 × 𝑷 y 𝑷 × 𝑷 z w v u x = z w y = v u z + 𝑷 u = w + 𝑷 v
2 addcompr x + 𝑷 y = y + 𝑷 x
3 addclpr x 𝑷 y 𝑷 x + 𝑷 y 𝑷
4 addasspr x + 𝑷 y + 𝑷 z = x + 𝑷 y + 𝑷 z
5 addcanpr x 𝑷 y 𝑷 x + 𝑷 y = x + 𝑷 z y = z
6 1 2 3 4 5 ecopover ~ 𝑹 Er 𝑷 × 𝑷