Metamath Proof Explorer


Theorem enrex

Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995) (New usage is discouraged.)

Ref Expression
Assertion enrex ~ 𝑹 V

Proof

Step Hyp Ref Expression
1 npex 𝑷 V
2 1 1 xpex 𝑷 × 𝑷 V
3 2 2 xpex 𝑷 × 𝑷 × 𝑷 × 𝑷 V
4 df-enr ~ 𝑹 = x y | x 𝑷 × 𝑷 y 𝑷 × 𝑷 z w v u x = z w y = v u z + 𝑷 u = w + 𝑷 v
5 opabssxp x y | x 𝑷 × 𝑷 y 𝑷 × 𝑷 z w v u x = z w y = v u z + 𝑷 u = w + 𝑷 v 𝑷 × 𝑷 × 𝑷 × 𝑷
6 4 5 eqsstri ~ 𝑹 𝑷 × 𝑷 × 𝑷 × 𝑷
7 3 6 ssexi ~ 𝑹 V