Metamath Proof Explorer


Theorem ensdomtr

Description: Transitivity of equinumerosity and strict dominance. (Contributed by NM, 26-Oct-2003) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion ensdomtr A B B C A C

Proof

Step Hyp Ref Expression
1 endom A B A B
2 domsdomtr A B B C A C
3 1 2 sylan A B B C A C