Metamath Proof Explorer


Theorem ensn1

Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002) Avoid ax-un . (Revised by BTernaryTau, 23-Sep-2024)

Ref Expression
Hypothesis ensn1.1 A V
Assertion ensn1 A 1 𝑜

Proof

Step Hyp Ref Expression
1 ensn1.1 A V
2 snex A V
3 f1oeq1 f = A f : A 1-1 onto A : A 1-1 onto
4 0ex V
5 1 4 f1osn A : A 1-1 onto
6 2 3 5 ceqsexv2d f f : A 1-1 onto
7 snex A V
8 snex V
9 breng A V V A f f : A 1-1 onto
10 7 8 9 mp2an A f f : A 1-1 onto
11 6 10 mpbir A
12 df1o2 1 𝑜 =
13 11 12 breqtrri A 1 𝑜