Metamath Proof Explorer


Theorem entrfi

Description: Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr ). (Contributed by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion entrfi B Fin A B B C A C

Proof

Step Hyp Ref Expression
1 enfii B Fin A B A Fin
2 1 3adant3 B Fin A B B C A Fin
3 entrfil A Fin A B B C A C
4 2 3 syld3an1 B Fin A B B C A C