Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
Cardinal number theorems using Axiom of Choice
entri2
Next ⟩
entri3
Metamath Proof Explorer
Ascii
Unicode
Theorem
entri2
Description:
Trichotomy of dominance and strict dominance.
(Contributed by
NM
, 4-Jan-2004)
Ref
Expression
Assertion
entri2
⊢
A
∈
V
∧
B
∈
W
→
A
≼
B
∨
B
≺
A
Proof
Step
Hyp
Ref
Expression
1
entric
⊢
A
∈
V
∧
B
∈
W
→
A
≺
B
∨
A
≈
B
∨
B
≺
A
2
brdom2
⊢
A
≼
B
↔
A
≺
B
∨
A
≈
B
3
2
orbi1i
⊢
A
≼
B
∨
B
≺
A
↔
A
≺
B
∨
A
≈
B
∨
B
≺
A
4
df-3or
⊢
A
≺
B
∨
A
≈
B
∨
B
≺
A
↔
A
≺
B
∨
A
≈
B
∨
B
≺
A
5
3
4
bitr4i
⊢
A
≼
B
∨
B
≺
A
↔
A
≺
B
∨
A
≈
B
∨
B
≺
A
6
1
5
sylibr
⊢
A
∈
V
∧
B
∈
W
→
A
≼
B
∨
B
≺
A