Metamath Proof Explorer


Theorem epfrc

Description: A subset of a well-founded class has a minimal element. (Contributed by NM, 17-Feb-2004) (Revised by David Abernethy, 22-Feb-2011)

Ref Expression
Hypothesis epfrc.1 B V
Assertion epfrc E Fr A B A B x B B x =

Proof

Step Hyp Ref Expression
1 epfrc.1 B V
2 1 frc E Fr A B A B x B y B | y E x =
3 dfin5 B x = y B | y x
4 epel y E x y x
5 4 rabbii y B | y E x = y B | y x
6 3 5 eqtr4i B x = y B | y E x
7 6 eqeq1i B x = y B | y E x =
8 7 rexbii x B B x = x B y B | y E x =
9 2 8 sylibr E Fr A B A B x B B x =