Metamath Proof Explorer


Theorem epihom

Description: An epimorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses isepi.b B = Base C
isepi.h H = Hom C
isepi.o · ˙ = comp C
isepi.e E = Epi C
isepi.c φ C Cat
isepi.x φ X B
isepi.y φ Y B
Assertion epihom φ X E Y X H Y

Proof

Step Hyp Ref Expression
1 isepi.b B = Base C
2 isepi.h H = Hom C
3 isepi.o · ˙ = comp C
4 isepi.e E = Epi C
5 isepi.c φ C Cat
6 isepi.x φ X B
7 isepi.y φ Y B
8 1 2 3 4 5 6 7 isepi φ f X E Y f X H Y z B Fun g Y H z g X Y · ˙ z f -1
9 simpl f X H Y z B Fun g Y H z g X Y · ˙ z f -1 f X H Y
10 8 9 syl6bi φ f X E Y f X H Y
11 10 ssrdv φ X E Y X H Y