Database
BASIC CATEGORY THEORY
Categories
Monomorphisms and epimorphisms
epihom
Next ⟩
epii
Metamath Proof Explorer
Ascii
Unicode
Theorem
epihom
Description:
An epimorphism is a morphism.
(Contributed by
Mario Carneiro
, 2-Jan-2017)
Ref
Expression
Hypotheses
isepi.b
⊢
B
=
Base
C
isepi.h
⊢
H
=
Hom
⁡
C
isepi.o
⊢
·
˙
=
comp
⁡
C
isepi.e
⊢
E
=
Epi
⁡
C
isepi.c
⊢
φ
→
C
∈
Cat
isepi.x
⊢
φ
→
X
∈
B
isepi.y
⊢
φ
→
Y
∈
B
Assertion
epihom
⊢
φ
→
X
E
Y
⊆
X
H
Y
Proof
Step
Hyp
Ref
Expression
1
isepi.b
⊢
B
=
Base
C
2
isepi.h
⊢
H
=
Hom
⁡
C
3
isepi.o
⊢
·
˙
=
comp
⁡
C
4
isepi.e
⊢
E
=
Epi
⁡
C
5
isepi.c
⊢
φ
→
C
∈
Cat
6
isepi.x
⊢
φ
→
X
∈
B
7
isepi.y
⊢
φ
→
Y
∈
B
8
1
2
3
4
5
6
7
isepi
⊢
φ
→
f
∈
X
E
Y
↔
f
∈
X
H
Y
∧
∀
z
∈
B
Fun
⁡
g
∈
Y
H
z
⟼
g
X
Y
·
˙
z
f
-1
9
simpl
⊢
f
∈
X
H
Y
∧
∀
z
∈
B
Fun
⁡
g
∈
Y
H
z
⟼
g
X
Y
·
˙
z
f
-1
→
f
∈
X
H
Y
10
8
9
syl6bi
⊢
φ
→
f
∈
X
E
Y
→
f
∈
X
H
Y
11
10
ssrdv
⊢
φ
→
X
E
Y
⊆
X
H
Y