Metamath Proof Explorer


Theorem episect

Description: If F is an epimorphism and F is a section of G , then G is an inverse of F and they are both isomorphisms. This is also stated as "an epimorphism which is also a split monomorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses sectepi.b B = Base C
sectepi.e E = Epi C
sectepi.s S = Sect C
sectepi.c φ C Cat
sectepi.x φ X B
sectepi.y φ Y B
episect.n N = Inv C
episect.1 φ F X E Y
episect.2 φ F X S Y G
Assertion episect φ F X N Y G

Proof

Step Hyp Ref Expression
1 sectepi.b B = Base C
2 sectepi.e E = Epi C
3 sectepi.s S = Sect C
4 sectepi.c φ C Cat
5 sectepi.x φ X B
6 sectepi.y φ Y B
7 episect.n N = Inv C
8 episect.1 φ F X E Y
9 episect.2 φ F X S Y G
10 eqid oppCat C = oppCat C
11 eqid Inv oppCat C = Inv oppCat C
12 1 10 4 6 5 7 11 oppcinv φ Y Inv oppCat C X = X N Y
13 10 1 oppcbas B = Base oppCat C
14 eqid Mono oppCat C = Mono oppCat C
15 eqid Sect oppCat C = Sect oppCat C
16 10 oppccat C Cat oppCat C Cat
17 4 16 syl φ oppCat C Cat
18 10 4 14 2 oppcmon φ Y Mono oppCat C X = X E Y
19 8 18 eleqtrrd φ F Y Mono oppCat C X
20 1 10 4 5 6 3 15 oppcsect φ G X Sect oppCat C Y F F X S Y G
21 9 20 mpbird φ G X Sect oppCat C Y F
22 13 14 15 17 6 5 11 19 21 monsect φ F Y Inv oppCat C X G
23 12 22 breqdi φ F X N Y G