Metamath Proof Explorer


Theorem epse

Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015)

Ref Expression
Assertion epse E Se A

Proof

Step Hyp Ref Expression
1 epel y E x y x
2 1 bicomi y x y E x
3 2 abbi2i x = y | y E x
4 vex x V
5 3 4 eqeltrri y | y E x V
6 rabssab y A | y E x y | y E x
7 5 6 ssexi y A | y E x V
8 7 rgenw x A y A | y E x V
9 df-se E Se A x A y A | y E x V
10 8 9 mpbir E Se A