| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssrab |
|
| 2 |
|
eleq2 |
|
| 3 |
|
eqeq1 |
|
| 4 |
2 3
|
imbi12d |
|
| 5 |
|
simprl |
|
| 6 |
|
sspwuni |
|
| 7 |
5 6
|
sylib |
|
| 8 |
|
vuniex |
|
| 9 |
8
|
elpw |
|
| 10 |
7 9
|
sylibr |
|
| 11 |
|
eluni2 |
|
| 12 |
|
r19.29 |
|
| 13 |
|
simpr |
|
| 14 |
13
|
impr |
|
| 15 |
|
elssuni |
|
| 16 |
15
|
adantr |
|
| 17 |
14 16
|
eqsstrrd |
|
| 18 |
17
|
rexlimiva |
|
| 19 |
12 18
|
syl |
|
| 20 |
19
|
ex |
|
| 21 |
20
|
ad2antll |
|
| 22 |
11 21
|
biimtrid |
|
| 23 |
22 7
|
jctild |
|
| 24 |
|
eqss |
|
| 25 |
23 24
|
imbitrrdi |
|
| 26 |
4 10 25
|
elrabd |
|
| 27 |
26
|
ex |
|
| 28 |
1 27
|
biimtrid |
|
| 29 |
28
|
alrimiv |
|
| 30 |
|
inss1 |
|
| 31 |
|
simprll |
|
| 32 |
31
|
elpwid |
|
| 33 |
30 32
|
sstrid |
|
| 34 |
|
vex |
|
| 35 |
34
|
inex1 |
|
| 36 |
35
|
elpw |
|
| 37 |
33 36
|
sylibr |
|
| 38 |
|
elin |
|
| 39 |
|
simprlr |
|
| 40 |
|
simprrr |
|
| 41 |
39 40
|
anim12d |
|
| 42 |
|
ineq12 |
|
| 43 |
|
inidm |
|
| 44 |
42 43
|
eqtrdi |
|
| 45 |
41 44
|
syl6 |
|
| 46 |
38 45
|
biimtrid |
|
| 47 |
37 46
|
jca |
|
| 48 |
47
|
ex |
|
| 49 |
|
eleq2 |
|
| 50 |
|
eqeq1 |
|
| 51 |
49 50
|
imbi12d |
|
| 52 |
51
|
elrab |
|
| 53 |
|
eleq2 |
|
| 54 |
|
eqeq1 |
|
| 55 |
53 54
|
imbi12d |
|
| 56 |
55
|
elrab |
|
| 57 |
52 56
|
anbi12i |
|
| 58 |
|
eleq2 |
|
| 59 |
|
eqeq1 |
|
| 60 |
58 59
|
imbi12d |
|
| 61 |
60
|
elrab |
|
| 62 |
48 57 61
|
3imtr4g |
|
| 63 |
62
|
ralrimivv |
|
| 64 |
|
pwexg |
|
| 65 |
64
|
adantr |
|
| 66 |
|
rabexg |
|
| 67 |
65 66
|
syl |
|
| 68 |
|
istopg |
|
| 69 |
67 68
|
syl |
|
| 70 |
29 63 69
|
mpbir2and |
|
| 71 |
|
eleq2 |
|
| 72 |
|
eqeq1 |
|
| 73 |
71 72
|
imbi12d |
|
| 74 |
|
pwidg |
|
| 75 |
74
|
adantr |
|
| 76 |
|
eqidd |
|
| 77 |
76
|
a1d |
|
| 78 |
73 75 77
|
elrabd |
|
| 79 |
|
elssuni |
|
| 80 |
78 79
|
syl |
|
| 81 |
|
ssrab2 |
|
| 82 |
|
sspwuni |
|
| 83 |
81 82
|
mpbi |
|
| 84 |
83
|
a1i |
|
| 85 |
80 84
|
eqssd |
|
| 86 |
|
istopon |
|
| 87 |
70 85 86
|
sylanbrc |
|