Description: The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of Mendelson p. 244. For a shorter proof requiring ax-un , see epweonALT . (Contributed by NM, 1-Nov-2003) Avoid ax-un . (Revised by BTernaryTau, 30-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epweon | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onfr | |
|
| 2 | df-po | |
|
| 3 | eloni | |
|
| 4 | ordirr | |
|
| 5 | 3 4 | syl | |
| 6 | epel | |
|
| 7 | 5 6 | sylnibr | |
| 8 | ontr1 | |
|
| 9 | epel | |
|
| 10 | epel | |
|
| 11 | 9 10 | anbi12i | |
| 12 | epel | |
|
| 13 | 8 11 12 | 3imtr4g | |
| 14 | 7 13 | anim12i | |
| 15 | 14 | ralrimiva | |
| 16 | 15 | ralrimivw | |
| 17 | 2 16 | mprgbir | |
| 18 | eloni | |
|
| 19 | ordtri3or | |
|
| 20 | biid | |
|
| 21 | epel | |
|
| 22 | 9 20 21 | 3orbi123i | |
| 23 | 19 22 | sylibr | |
| 24 | 3 18 23 | syl2an | |
| 25 | 24 | rgen2 | |
| 26 | df-so | |
|
| 27 | 17 25 26 | mpbir2an | |
| 28 | df-we | |
|
| 29 | 1 27 28 | mpbir2an | |