Metamath Proof Explorer


Theorem epweon

Description: The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of Mendelson p. 244. (Contributed by NM, 1-Nov-2003)

Ref Expression
Assertion epweon E We On

Proof

Step Hyp Ref Expression
1 onfr E Fr On
2 eloni x On Ord x
3 eloni y On Ord y
4 ordtri3or Ord x Ord y x y x = y y x
5 epel x E y x y
6 biid x = y x = y
7 epel y E x y x
8 5 6 7 3orbi123i x E y x = y y E x x y x = y y x
9 4 8 sylibr Ord x Ord y x E y x = y y E x
10 2 3 9 syl2an x On y On x E y x = y y E x
11 10 rgen2 x On y On x E y x = y y E x
12 dfwe2 E We On E Fr On x On y On x E y x = y y E x
13 1 11 12 mpbir2an E We On