Metamath Proof Explorer


Theorem epweon

Description: The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of Mendelson p. 244. (Contributed by NM, 1-Nov-2003) Avoid ax-un . (Revised by BTernaryTau, 30-Nov-2024)

Ref Expression
Assertion epweon E We On

Proof

Step Hyp Ref Expression
1 onfr E Fr On
2 df-po E Po On x On y On z On ¬ x E x x E y y E z x E z
3 eloni x On Ord x
4 ordirr Ord x ¬ x x
5 3 4 syl x On ¬ x x
6 epel x E x x x
7 5 6 sylnibr x On ¬ x E x
8 ontr1 z On x y y z x z
9 epel x E y x y
10 epel y E z y z
11 9 10 anbi12i x E y y E z x y y z
12 epel x E z x z
13 8 11 12 3imtr4g z On x E y y E z x E z
14 7 13 anim12i x On z On ¬ x E x x E y y E z x E z
15 14 ralrimiva x On z On ¬ x E x x E y y E z x E z
16 15 ralrimivw x On y On z On ¬ x E x x E y y E z x E z
17 2 16 mprgbir E Po On
18 eloni y On Ord y
19 ordtri3or Ord x Ord y x y x = y y x
20 biid x = y x = y
21 epel y E x y x
22 9 20 21 3orbi123i x E y x = y y E x x y x = y y x
23 19 22 sylibr Ord x Ord y x E y x = y y E x
24 3 18 23 syl2an x On y On x E y x = y y E x
25 24 rgen2 x On y On x E y x = y y E x
26 df-so E Or On E Po On x On y On x E y x = y y E x
27 17 25 26 mpbir2an E Or On
28 df-we E We On E Fr On E Or On
29 1 27 28 mpbir2an E We On