Metamath Proof Explorer


Theorem eq0

Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of Suppes p. 22. (Contributed by NM, 29-Aug-1993) Avoid ax-11 , ax-12 . (Revised by Gino Giotto and Steven Nguyen, 28-Jun-2024) Avoid ax-8 , df-clel . (Revised by Gino Giotto, 6-Sep-2024)

Ref Expression
Assertion eq0 A = x ¬ x A

Proof

Step Hyp Ref Expression
1 dfnul4 = y |
2 1 eqeq2i A = A = y |
3 dfcleq A = y | x x A x y |
4 df-clab x y | x y
5 sbv x y
6 4 5 bitri x y |
7 6 bibi2i x A x y | x A
8 nbfal ¬ x A x A
9 7 8 bitr4i x A x y | ¬ x A
10 9 albii x x A x y | x ¬ x A
11 3 10 bitri A = y | x ¬ x A
12 2 11 bitri A = x ¬ x A