Metamath Proof Explorer


Theorem eq0f

Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of Suppes p. 22. (Contributed by BJ, 15-Jul-2021)

Ref Expression
Hypothesis eq0f.1 _ x A
Assertion eq0f A = x ¬ x A

Proof

Step Hyp Ref Expression
1 eq0f.1 _ x A
2 nfcv _ x
3 1 2 cleqf A = x x A x
4 noel ¬ x
5 4 nbn ¬ x A x A x
6 5 albii x ¬ x A x x A x
7 3 6 bitr4i A = x ¬ x A