Metamath Proof Explorer


Theorem eq0rdv

Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014) Avoid ax-8 , df-clel . (Revised by Gino Giotto, 6-Sep-2024)

Ref Expression
Hypothesis eq0rdv.1 φ ¬ x A
Assertion eq0rdv φ A =

Proof

Step Hyp Ref Expression
1 eq0rdv.1 φ ¬ x A
2 1 alrimiv φ x ¬ x A
3 dfnul4 = y |
4 3 eqeq2i A = A = y |
5 dfcleq A = y | x x A x y |
6 df-clab x y | x y
7 sbv x y
8 6 7 bitri x y |
9 8 bibi2i x A x y | x A
10 9 albii x x A x y | x x A
11 nbfal ¬ x A x A
12 11 bicomi x A ¬ x A
13 12 albii x x A x ¬ x A
14 10 13 bitri x x A x y | x ¬ x A
15 4 5 14 3bitrri x ¬ x A A =
16 2 15 sylib φ A =