Metamath Proof Explorer


Theorem eqabcbw

Description: Version of eqabcb using implicit substitution, which requires fewer axioms. (Contributed by TM, 24-Jan-2026)

Ref Expression
Hypothesis eqabbw.1 x = y φ ψ
Assertion eqabcbw x | φ = A y ψ y A

Proof

Step Hyp Ref Expression
1 eqabbw.1 x = y φ ψ
2 1 eqabbw A = x | φ y y A ψ
3 eqcom x | φ = A A = x | φ
4 bicom ψ y A y A ψ
5 4 albii y ψ y A y y A ψ
6 2 3 5 3bitr4i x | φ = A y ψ y A