Metamath Proof Explorer


Theorem eqbrrdiv

Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010)

Ref Expression
Hypotheses eqbrrdiv.1 Rel A
eqbrrdiv.2 Rel B
eqbrrdiv.3 φ x A y x B y
Assertion eqbrrdiv φ A = B

Proof

Step Hyp Ref Expression
1 eqbrrdiv.1 Rel A
2 eqbrrdiv.2 Rel B
3 eqbrrdiv.3 φ x A y x B y
4 df-br x A y x y A
5 df-br x B y x y B
6 3 4 5 3bitr3g φ x y A x y B
7 1 2 6 eqrelrdv φ A = B