Metamath Proof Explorer


Theorem eqbrrdiv

Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010)

Ref Expression
Hypotheses eqbrrdiv.1 RelA
eqbrrdiv.2 RelB
eqbrrdiv.3 φxAyxBy
Assertion eqbrrdiv φA=B

Proof

Step Hyp Ref Expression
1 eqbrrdiv.1 RelA
2 eqbrrdiv.2 RelB
3 eqbrrdiv.3 φxAyxBy
4 df-br xAyxyA
5 df-br xByxyB
6 3 4 5 3bitr3g φxyAxyB
7 1 2 6 eqrelrdv φA=B