Metamath Proof Explorer


Theorem eqbrrdva

Description: Deduction from extensionality principle for relations, given an equivalence only on the relation domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017)

Ref Expression
Hypotheses eqbrrdva.1 φ A C × D
eqbrrdva.2 φ B C × D
eqbrrdva.3 φ x C y D x A y x B y
Assertion eqbrrdva φ A = B

Proof

Step Hyp Ref Expression
1 eqbrrdva.1 φ A C × D
2 eqbrrdva.2 φ B C × D
3 eqbrrdva.3 φ x C y D x A y x B y
4 xpss C × D V × V
5 1 4 sstrdi φ A V × V
6 df-rel Rel A A V × V
7 5 6 sylibr φ Rel A
8 2 4 sstrdi φ B V × V
9 df-rel Rel B B V × V
10 8 9 sylibr φ Rel B
11 1 ssbrd φ x A y x C × D y
12 brxp x C × D y x C y D
13 11 12 syl6ib φ x A y x C y D
14 2 ssbrd φ x B y x C × D y
15 14 12 syl6ib φ x B y x C y D
16 3 3expib φ x C y D x A y x B y
17 13 15 16 pm5.21ndd φ x A y x B y
18 7 10 17 eqbrrdv φ A = B