Metamath Proof Explorer


Theorem eqbrriv

Description: Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006)

Ref Expression
Hypotheses eqbrriv.1 Rel A
eqbrriv.2 Rel B
eqbrriv.3 x A y x B y
Assertion eqbrriv A = B

Proof

Step Hyp Ref Expression
1 eqbrriv.1 Rel A
2 eqbrriv.2 Rel B
3 eqbrriv.3 x A y x B y
4 df-br x A y x y A
5 df-br x B y x y B
6 3 4 5 3bitr3i x y A x y B
7 1 2 6 eqrelriiv A = B