Metamath Proof Explorer


Theorem eqbrtrdi

Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999)

Ref Expression
Hypotheses eqbrtrdi.1 φ A = B
eqbrtrdi.2 B R C
Assertion eqbrtrdi φ A R C

Proof

Step Hyp Ref Expression
1 eqbrtrdi.1 φ A = B
2 eqbrtrdi.2 B R C
3 1 breq1d φ A R C B R C
4 2 3 mpbiri φ A R C