Metamath Proof Explorer


Theorem eqbrtrri

Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999)

Ref Expression
Hypotheses eqbrtrr.1 A = B
eqbrtrr.2 A R C
Assertion eqbrtrri B R C

Proof

Step Hyp Ref Expression
1 eqbrtrr.1 A = B
2 eqbrtrr.2 A R C
3 1 eqcomi B = A
4 3 2 eqbrtri B R C