Metamath Proof Explorer


Theorem eqcoe1ply1eq

Description: Two polynomials over the same ring are equal if they have identical coefficients. (Contributed by AV, 7-Oct-2019)

Ref Expression
Hypotheses eqcoe1ply1eq.p P = Poly 1 R
eqcoe1ply1eq.b B = Base P
eqcoe1ply1eq.a A = coe 1 K
eqcoe1ply1eq.c C = coe 1 L
Assertion eqcoe1ply1eq R Ring K B L B k 0 A k = C k K = L

Proof

Step Hyp Ref Expression
1 eqcoe1ply1eq.p P = Poly 1 R
2 eqcoe1ply1eq.b B = Base P
3 eqcoe1ply1eq.a A = coe 1 K
4 eqcoe1ply1eq.c C = coe 1 L
5 fveq2 k = n A k = A n
6 fveq2 k = n C k = C n
7 5 6 eqeq12d k = n A k = C k A n = C n
8 7 rspccv k 0 A k = C k n 0 A n = C n
9 8 adantl R Ring K B L B k 0 A k = C k n 0 A n = C n
10 9 imp R Ring K B L B k 0 A k = C k n 0 A n = C n
11 3 fveq1i A n = coe 1 K n
12 4 fveq1i C n = coe 1 L n
13 10 11 12 3eqtr3g R Ring K B L B k 0 A k = C k n 0 coe 1 K n = coe 1 L n
14 13 oveq1d R Ring K B L B k 0 A k = C k n 0 coe 1 K n P n mulGrp P var 1 R = coe 1 L n P n mulGrp P var 1 R
15 14 mpteq2dva R Ring K B L B k 0 A k = C k n 0 coe 1 K n P n mulGrp P var 1 R = n 0 coe 1 L n P n mulGrp P var 1 R
16 15 oveq2d R Ring K B L B k 0 A k = C k P n 0 coe 1 K n P n mulGrp P var 1 R = P n 0 coe 1 L n P n mulGrp P var 1 R
17 eqid var 1 R = var 1 R
18 eqid P = P
19 eqid mulGrp P = mulGrp P
20 eqid mulGrp P = mulGrp P
21 eqid coe 1 K = coe 1 K
22 1 17 2 18 19 20 21 ply1coe R Ring K B K = P n 0 coe 1 K n P n mulGrp P var 1 R
23 22 3adant3 R Ring K B L B K = P n 0 coe 1 K n P n mulGrp P var 1 R
24 eqid coe 1 L = coe 1 L
25 1 17 2 18 19 20 24 ply1coe R Ring L B L = P n 0 coe 1 L n P n mulGrp P var 1 R
26 25 3adant2 R Ring K B L B L = P n 0 coe 1 L n P n mulGrp P var 1 R
27 23 26 eqeq12d R Ring K B L B K = L P n 0 coe 1 K n P n mulGrp P var 1 R = P n 0 coe 1 L n P n mulGrp P var 1 R
28 27 adantr R Ring K B L B k 0 A k = C k K = L P n 0 coe 1 K n P n mulGrp P var 1 R = P n 0 coe 1 L n P n mulGrp P var 1 R
29 16 28 mpbird R Ring K B L B k 0 A k = C k K = L
30 29 ex R Ring K B L B k 0 A k = C k K = L