Description: If both set differences of two sets are empty, those sets are equal. (Contributed by Thierry Arnoux, 16-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | eqdif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss | ||
2 | ssdif0 | ||
3 | ssdif0 | ||
4 | 2 3 | anbi12i | |
5 | 1 4 | sylbbr |