Metamath Proof Explorer


Theorem eqelbid

Description: A variable elimination law for equality within a given set A . See equvel . (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses eqelbid.1 φ B A
eqelbid.2 φ C A
Assertion eqelbid φ x A x = B x = C B = C

Proof

Step Hyp Ref Expression
1 eqelbid.1 φ B A
2 eqelbid.2 φ C A
3 eqeq1 x = B x = B B = B
4 eqeq1 x = B x = C B = C
5 3 4 bibi12d x = B x = B x = C B = B B = C
6 eqid B = B
7 6 tbt B = C B = C B = B
8 bicom B = C B = B B = B B = C
9 7 8 bitri B = C B = B B = C
10 5 9 bitr4di x = B x = B x = C B = C
11 simpr φ x A x = B x = C x A x = B x = C
12 1 adantr φ x A x = B x = C B A
13 10 11 12 rspcdva φ x A x = B x = C B = C
14 simplr φ B = C x A B = C
15 14 eqeq2d φ B = C x A x = B x = C
16 15 ralrimiva φ B = C x A x = B x = C
17 13 16 impbida φ x A x = B x = C B = C